Secondary Metabolites from the Fungus Chaetomium brasiliense

by Guo-You Li, Bo-Gang Li, Tao Yang, Guang-Ye Liu, and Guo-Lin Zhang*

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China (phone/fax: +86-28-85225401; e-mail: zhanggl@cib.ac.cn)

Two new depsidones, mollicellins I and J (1 and 2, resp.), and a new chromone, 2-(hydroxymethyl)-6methylmethyleugenin (3), along with six known compounds, 4-9, were isolated from the ethyl acetate extract of a solid-state fermented culture of *Chaetomium brasiliense*. Their structures were elucidated based on spectroscopic analysis. Mollicellins I and H (5) exhibited significant growth inhibitory activity against human breast cancer (Bre04), human lung (Lu04), and human neuroma (N04) cell lines with GI_{50} values between 2.5–8.6 µg/ml.

Introduction. – The fungi belonging to the genus *Chaetomium* with *ca.* 100 species are widely distributed in soil, air, plants, and animals [1]. The fungi of *Chaetomium* produce many classes of secondary metabolites with various biological properties such as antifungal, immunomodulatory, cytotoxic, and antitumor effects [2-8]. In this study on *C. brasiliense*, two new depsidones, mollicellins I and J (1 and 2, resp.), and a new chromone, 2-(hydroxymethyl)-6-methylmethyleugenin (3), were isolated, along with mollicellin D (4) [9], mollicellin H (5) [9], eugenetin (6) [10], *O*-methylsterigmatocystin (7) [11], sterigmatocystin (8) [12], and chaetocin (9) [13]. We herein report the isolation and structure elucidation of compounds 1-3, and cytotoxic activities of compounds 1, 2, and 5.

Results and Discussion. – 1. *Structure Elucidation*. Compound **1** was isolated as a white amorphous powder. Its molecular formula $C_{21}H_{22}O_6$ was established by the quasimolecular ion peak at m/z 393.1299 ([M + Na]⁺) in the HR-ESI-MS. The IR spectrum suggested the presence of OH groups ($\tilde{\nu}_{max}$ 3389 cm⁻¹). The ¹³C-NMR spectrum showed 21 signals (*Table 1*). The IR band at $\tilde{\nu}_{max}$ 1704 cm⁻¹ and the ¹³C-NMR signal at δ (C) 163.9 (C(11)) indicated the presence of a conjugated ester C=O group. A prenyl group could be concluded from the ¹H-NMR signals at δ (H) 1.59 (s, Me(6'))¹), 1.69 (s, Me(7')), 3.20 (d, J = 6.7 Hz, CH₂(3')), and 4.94 (t, J = 6.7 Hz, H–C(4')) (*Table 2*), and the HMBC correlations of Me(6') and Me(7') with C(3') and C(4'), and CH₂(3') with C(4') and C(5'). Two benzene moieties were evident from the twelve ¹³C-NMR signals between δ (C) 105.7 and 163.9, besides those for one ester C=O c-atom and two olefinic C-atoms in the prenyl group. A Me group at δ (H) 2.30 (Me(1')) was located at C(1) on the basis of the HMBC correlation of Me(1') with δ (C) 143.1 (C(1)), 115.6 (C(2)), and 112.3 (C(11a)). The HMBC correlations of δ (H) 4.62 (CH₂(2')) with δ (C) 117.3 (C(4)), 160.5 (C(3)), and 161.7 (C(4a)), and H–C(2) with C(1), C(3), C(4), and

¹⁾ Arbitrary numbering. For systematic names, see Exper. Part.

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Table 1. ¹³C-NMR Data of Compounds 1, 2, 4, and 5^a)^b)¹)

Position	1	2	4	5	Position	1	2	4	5
C(1)	143.1	149.5	139.7	151.9	C(11)	163.9	162.7	162.8	162.7
C(2) or $H-C(2)$	115.6	120.0	119.6	117.4	C(11a)	112.3	114.9	114.8	113.4
C(3)	160.5	161.7	158.0	164.0	Me(1')	21.1	18.7	17.5	21.8
C(4)	117.3	111.0	115.8	111.9	$H-C(2')$ or $CH_2(2')$	52.3	193.7	56.5	191.7
C(4a)	161.7	160.3	156.2	152.5	$CH_2(3')$	25.3	25.0	25.0	25.3
C(5a)	149.0	148.6	149.0	148.6	H-C(4')	122.6	121.9	122.1	122.4
H-C(6)	105.7	104.4	105.2	105.0	C(5')	131.2	131.3	131.1	131.4
C(7)	152.3	152.1	151.9	152.6	Me(6')	25.9	24.9	24.9	25.9
C(8)	124.8	126.0	125.3	125.6	Me(7')	18.2	17.1	17.1	18.2
C(9)	128.9	129.9	129.3	129.5	Me(8')	12.7	11.8	11.8	12.8
C(9a)	135.7	135.4	135.8	135.2					

^a) Assignments based on HSQC and HMBC. ^b) **1** and **5** in $(D_6)DMSO$, **2** in $(D_6)acetone$, **4** in CDCl₃; 150 MHz.

C(11a) suggested the partial structure **A** (*Fig. 1*). Likewise, the partial structure **B** was determined on the basis of the HMBC and NOESY experiments. The C-atoms at δ (C) 149.0 (C(5a)) and 135.7 (C(9a)) were oxygenated. The remaining C-atom (δ (C) 163.9 (C(11))) could only be adjacent to C(11a). Subunits **A** and **B** could be joined on the basis of strong NOESY correlation between CH₂(2') and H–C(6), and the degree of unsaturation from the molecular formula.

Compound 2 was obtained as a white amorphous powder. Its molecular formula $C_{21}H_{19}ClO_6$ was deduced from the quasi-molecular ion peaks at m/z 401.0789 ([M -

Position	1	2	4	5
H-C(2)	6.61 (s)	-	_	6.83 (s)
H-C(6)	6.76(s)	6.87(s)	6.77(s)	6.80(s)
Me(1')	2.30(s)	2.55(s)	2.43(s)	2.42(s)
$H - C(2')$ or $CH_2(2')$	4.62(s)	10.63(s)	5.14(s)	10.05(s)
CH ₂ (3')	3.20 (d, J = 6.7)	3.35(d, J = 6.7)	3.33 (d, J = 6.7)	3.23 (d, J = 6.7)
H-C(4')	4.94(t, J = 6.7)	5.02(t, J = 6.7)	5.02(t, J = 6.7)	4.96(t, J = 6.7)
Me(6')	1.59(s)	1.64(s)	1.63(s)	1.61(s)
Me(7')	1.69(s)	1.76(s)	1.75(s)	1.71(s)
Me(8')	2.15 (s)	2.27 (s)	2.24 (s)	2.19 (s)

Table 2. ¹*H*-*NMR* Data of Compounds 1, 2, 4, and 5. δ in ppm, J in Hz^a)^b)¹.

^a) Assignments based on HSQC and HMBC. ^b) **1** and **5** in (D_6) DMSO, **2** in (D_6) acetone, **4** in CDCl₃; 600 MHz.

Fig. 1. Key HMBC correlations $(H \rightarrow C)$ of substructures **A** and **B**, and NOESY (\leftrightarrow) correlations of mollicellin I (1)

H]⁻) and 403.0775 ([M - H]⁻) with a relative intensity ratio of *ca*. 3:1 in the HR-ESI-MS. The NMR spectra of compound **2** were very similar to those of **1**. However, the CH₂OH group (CH₂(2'))¹) at C(4) in compound **1** was replaced by a CHO group (δ (H) 10.63, δ (C) 193.7) in **2**, which was supported by the HMBC correlation of H–C(2') with δ (C) 161.7 (C(3)) and δ (C) 160.3 (C(4a)). Meanwhile, the Cl–C(2) moiety was determined by comparing its NMR data with those of compounds **1**, **4**, and **5**, and the HMBC correlations of Me(1') with two quaternary olefinic C-atoms (δ (C) 120.0 (C(2)) and 114.9 (C(11a)); *Tables 1* and 2). The structure of **2** was finally elucidated by HSQC, HMBC, and NOESY experiments (*Fig. 2*).

Fig. 2. Key HMBC $(H \rightarrow C)$ and NOESY (\leftrightarrow) correlations of mollicellin J (2)

Compound **3** has a molecular formula of $C_{12}H_{12}O_5$ determined from the HR-ESI-MS quasi-molecular ion peak at m/z 259.0568 ($[M+Na]^+$). The IR spectrum of **3** suggested the presence of OH groups ($\tilde{\nu}_{max}$ 3369, 3218 cm⁻¹). The ¹³C-NMR spectrum showed twelve signals. The UV absorptions at λ_{max} 208 (4.32), 231 (4.12), 257 (4.03), and 293 (3.83) nm, the IR absorption at $\tilde{\nu}_{max}$ 1662 cm⁻¹, and the ¹³C-NMR signal at $\delta(C)$ 182.4 (C(4)) indicated that compound **3** was a benzopyranone derivative, similar to compound **6**. However, C(2) was substituted with a CH₂OH group in compound **3** instead of the Me group in **6**. The bathochromic shift of UV absorptions resulting from the addition of AlCl₃ suggested a chelated OH group at C(5). The structure of **3** was elucidated by HMBC and NOESY experiments (*Fig. 3*).

Fig. 3. Key HMBC (H \rightarrow C) and NOESY (\leftrightarrow) correlations of compound **3**

The structures of the known compounds 4-5 were determined by HSQC, HMBC, and NOESY experiments. Compounds 6-9 were determined by comparing their physical and spectral data with those reported [10-13].

2. *Biological Studies.* Compounds **1**, **2**, and **5** were evaluated for their cytotoxic properties against human breast cancer (Bre04), and human lung (Lu04) and human neuroma (N04) cell lines (*Table 3*). Compounds **2** and **5** exhibited significant activities. It seems that the HCO group at C(4) is essential for the cytotoxicity.

Compounds	Bre04	Lu04	N04	
1	> 10.0	> 10.0	> 10.0	
2	5.9	8.6	3.8	
5	5.1	6.5	2.5	
Taxol	0.04	0.03	0.04	

Table 3. GI $_{50}$ Values [µg/ml] of Compounds 1, 2, and 5

Experimental Part

General. Column chromatography (CC): silica gel (200–300 mesh, and 10–40 µm; Qingdao Marine Chemical Inc.). UV Spectra: Perkin-Elmer Lambda 35 UV/VIS spectrometer; λ_{max} (log ε) in nm. IR Spectra: Perkin-Elmer Spectrum One FT-IR spectrometer, KBr pellets; in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker AM-600 spectrometer; δ in ppm rel. to SiMe₄ (=0 ppm), J in Hz ESI- and HR-ESI-MS: BioTOF-Q mass spectrometer; in m/z (rel. %).

Microorganism and Fermentation. C. brasiliense (C. 3.396) was obtained from the Institute of Microbiology, the Chinese Academy of Sciences. It was maintained on potato dextrose agar slant (PDA) at 4° and was stocked in Chengdu Institute of Biology of the Chinese Academy of Sciences. The seed culture medium was comprised of dextrose (20 g/l), yeast extract (1 g/l), KH₂PO₄ (3 g/l), MgSO₄·7 H₂O (1.5 g/l), and potato extract prepared by extracting 200 g of potato with 1 l of boiling H₂O for 20 min. The

pH of the medium was adjusted to 6.0 with 1M NaOH (aq.). The solid culture medium was comprised of rice and 0.1% peptone. The sterilization was carried out at 121° under 15 psi for 30 min.

The fresh mycelium grown on PDA slant at 28° for 3 d was inoculated into 500-ml flasks containing 100 ml of sterilized seed medium. Flasks with inoculated medium were placed in a rotary shaker at 28° and incubated at 180 rpm for 2 d. The seed culture was inoculated into sterilized solid medium for further fermentation at 28° for 25 d.

Extraction and Isolation. The fermented solid medium (4.0 kg) was soaked with AcOEt ($81 \times 1, 3d$) at r.t. The solvent was evaporated *in vacuo* to afford a residue (24 g). The residue was separated by CC (silica gel (300 g), Ø 70 mm × 160 mm; petroleum ether/acetone 10:1, 5:1, 2:1, 1:1, 0:1, each 1000 ml) to yield *Fractions A* (9.5 g), *B* (6.3 g), *C* (3.1 g), *D* (4.5 g), and *E* (1.5 g). The separation of *Fr. B* by CC (silica gel (240 g), Ø 64 mm × 150 mm; petroleum ether/ACOEt 4:1, 2:1, each 900 ml) yielded *Fr. BA* (2.6 g), *BB* (1.3 g), *BC* (0.8 g), and *BD* (1.0 g). Separation of *Fr. BB* by CC (silica gel (65 g), Ø 32 mm × 160 mm; petroleum ether/AcOEt 3:1, 2:1, each 900 ml) yielded *Fr. BA* (2.6 g), *BB* (1.5 g), Ø 50 mm × 150 mm; petroleum ether/AcOEt 3:1, 2:1, each 800 ml) to afford three subfractions *CA* (550 mg), *CB* (800 mg) and *CC* (620 mg). *Fr. CA* was separated by CC (silica gel column (25 g), Ø 20 mm × 170 mm; petroleum ether/acetone 6:1, 700 ml) to yield compounds **4** (4 mg), **5** (105 mg), and **3** (8 mg). *Fr. CB* was subjected to silica gel CC (petroleum ether/acetone 4:1, 500 ml) to give **1** (35 mg) and **5** (58 mg). *Fr. CC* was separated by CC (silica gel (75 g), Ø 30 mm × 200 mm; CHCl₃/ acetone 10:1, 550 ml) to give **2** (15 mg). *Fr. D* (4.5 g) was separated by CC (silica gel (130 g), Ø 16 mm × 220 mm; CHCl₃/acetone 15:1, 10:1, 5:1, each 1000 ml) to give **9** (310 mg).

Mollicellin I (=3,7-*Dihydroxy-4-(hydroxymethyl)-1,9-dimethyl-8-(3-methylbut-2-enyl)-11*H-*dibenzo*[b,e][1,4]*dioxepin-11-one*; **1**). White amorphous powder. UV (MeOH): 206 (4.79), 269 (4.16). IR (KBr): 3389, 3253, 2920, 1704, 1642, 1608, 1437, 1276. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS (pos.): 393.1299 ($[M + Na]^+$, C₂₁H₂₂NaO⁺₆; calc. 393.1309).

Mollicellin J (=2-Chloro-3,7-dihydroxy-1,9-dimethyl-8-(3-methylbut-2-enyl)-11-oxo-11H-dibenzo-[b,e][1,4]dioxepin-4-carboxaldehyde; **2**). White amorphous powder. UV (MeOH): 205 (4.59), 267 (3.93). IR (KBr): 3414, 2913, 1712, 1637, 1602, 1558, 1443, 1259, 842. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS (pos.): 401.0789 ($[M - H]^-$, C₂₁H₁₈³⁵ClO₆; calc. 401.0786), 403.0775 ($[M - H]^-$, C₂₁H₁₈³⁷ClO₆).

2-(*Hydroxymethyl*)-6-*methylmethyleugenin* (=5-*Hydroxy*-2-(*hydroxymethyl*)-7-*methoxy*-6-*methyl*-4H-1-benzopyran-4-one; **3**). White amorphous powder. UV (MeOH): 208 (4.32), 231 (4.12), 257 (4.03), 293 (3.83). UV (MeOH–AlCl₃): 211 (4.38), 239 (4.17), 268 (4.08), 312 (3.88). IR (KBr): 3369, 3218, 3086, 1662, 1631, 1577, 1498, 1463, 1328, 1140, 734. ¹H-NMR (CDCl₃, 600 MHz): 12.67 (*s*, OH); 6.38 (*s*, H–C(8)); 6.32 (*s*, H–C(3)); 4.57 (*s*, CH₂(9)); 3.88 (*s*, Me(11)); 2.09 (*s*, Me(10)). ¹³C-NMR (CDCl₃, 150 MHz): 182.4 (C=O); 167.1 (C(2)); 163.5 (C(7)); 158.6 (C(5)); 156.0 (C(8a)); 109.3 (C(6)); 107.1 (C(3)); 105.5 (C(4a)); 89.3 (C(8)); 61.5 (C(9)); 55.9 (C(11)); 7.2 (C(10)). HR-ESI-MS (pos.): 259.0568 ([M + Na]⁺, C₁₂H₁₂NaO⁺₅; calc. 259.0577).

Mollicellin D (=2-Chloro-3,7-dihydroxy-4-(hydroxymethyl)-1,9-dimethyl-8-(3-methylbut-2-enyl)-11H-dibenzo[b,e][1,4]dioxepin-11-one; **4**): White amorphous powder. UV (MeOH): 206 (4.55), 267 (3.91). IR (KBr): 3397, 3265, 2925, 1700, 1640, 1605, 1440, 1270. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS (pos.): 427.0929 ($[M + Na]^+$, $C_{21}H_{20}^{35}CINaO_6^+$; calc. 427.0919), 427.0929 ($[M + Na]^+$, $C_{21}H_{20}^{37}CINaO_6^+$).

Mollicellin H (= 3,7-*Dihydroxy-1,9-dimethyl-8-(3-methylbut-2-enyl)-11-oxo-11*H-*dibenzo[b,e][1,4]-dioxepin-4-carbaldehyde*, **5**): White amorphous powder. UV (MeOH): 205 (4.76), 269 (3.98). IR (KBr): 3375, 1696, 1661, 1624, 1598, 1568, 1439, 1278. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS (pos.): 391.1169 ($[M+Na]^+$, C₂₁H₂₀NaO₆⁺; calc. 391.1152).

Cytotoxicity Assay. Cancer cell lines Bre04 (MDA-MB-231), Lu04 (NCI-H460) and N04 (SF-268) were obtained from the *American Type Culture Collection* (ATCC) and cultured according to the supplier's instruction. The cells were seeded into 96-well plates, incubated for 16 h at 37° , and treated with compounds **1**, **2**, and **5** at different concentrations for 48 h. Taxol was used as positive control. The cytotoxic activities were examined by means of colorimetric chemosensitivity assay with SRB (sulforodhamine B). The GI_{50} value (the drug concentration required to inhibit the cell growth by 50%) was used as a parameter for cytotoxicity [14][15].

REFERENCES

- [1] S. Udagawa, N. Toyazaki, T. Yaguchi, Mycoscience 1997, 38, 399.
- [2] J.-H. Park, G. J. Choi, K. S. Jang, H. K. Lim, H. T. Kim, K. Y. Cho, J.-C. Kim, FEMS Microbiol. Lett. 2005, 252, 309.
- [3] G. Ding, Y. C. Song, J. R. Chen, C. Xu, H. M. Ge, X. T. Wang, R. X. Tan, J. Nat. Prod. 2006, 69, 302.
- [4] M. Kobayashi, R. Kanasaki, I. Sato, F. Abe, K. Nitta, M. Ezaki, K. Sakamoto, M. Hashimoto, A. Fujie, M. Hino, Y. Hori, *Biosci. Biotechnol. Biochem.* 2005, 69, 515.
- [5] H. Fujimoto, M. Sumino, E. Okuyama, M. Ishibashi, J. Nat. Prod. 2004, 67, 98.
- [6] B. P. Bashyal, E. M. K. Wijeratne, S. H. Faeth, A. A. L. Gunatilaka, J. Nat. Prod. 2005, 68, 724.
- [7] C. R. Isham, J. D. Tibodeau, W. Jin, R. Xu, M. M. Timm, K. C. Bible, Blood 2007, 109, 2579.
- [8] G.-Y. Li, B.-G. Li, T. Yang, J.-F. Yan, G.-Y. Liu, G.-L. Zhang, J. Nat. Prod. 2006, 69, 1374.
- [9] A. A. Stark, B. Kobbe, D. Matsuo, G. Büchi, G. N. Wogan, A. L. Demain, Appl. Environ. Microbiol. 1978, 36, 412.
- [10] C. H. Fox, S. Huneck, *Phytochemistry* **1969**, *8*, 1301.
- [11] L. K. Casillas, C. A. Townsend, J. Org. Chem. 1999, 64, 4050.
- [12] K. G. R. Pachler, P. S. Steyn, R. Vleggaar, P. L. Wessels, S. De Buys, J. Chem. Soc., Perkin Trans. 1 1976, 1182.
- [13] D. Hauser, H. P. Weber, H. P. Sigg, Helv. Chim. Acta 1970, 53, 1061.
- [14] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1107.
- [15] L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. Simon, S. Tosini, P. Skehan, D. A. Scudiero, A. Monks, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1113.

Received July 26, 2007